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Abstract. With the help of perturbation theory the asymptotic expansions (at small and large internuclear
distances R) of the eigenvalues (potential curves) E(R) of the two-Coulomb-centre problem in 2 + 1
dimensions are obtained. We compare the results obtained with the data from similar approximation for
two-Coulomb-centre problem in 3 + 1 dimensions.

PACS. 31.15.Md Perturbation theory – 31.30.Jv Relativistic and quantum electrodynamic effects in atoms
and molecules – 34.50.-s Scattering of atoms and molecules

1 Introduction

At the present time a severe asymmetry exists in the
developments of the theories of nonrelativistic and rel-
ativistic quantum mechanical problems of two Coulomb
centres (the so-called Z1eZ2 problem). Numerous effec-
tive asymptotic and numerical methods of solving the
two-Coulomb-centre problems in Shrödinger equation the-
ory [1] can be compared against only few examples of
the same problem in Dirac equation theory within various
approximations [2–7] (the Galerkin method, diagonaliza-
tion, the variational method, perturbation theory, Furry-
Sommerfeld-Maue approximation). This situation is a sur-
prising example of inertia in a theoretical field in the face
of the deficiency of experimental data for heavy and su-
perheavy quasi-molecular systems due to the difficulties
in construction of sources of multiply charged ions and
formation of beams of rather slow particles.

Also, with the recent construction of powerful acceler-
ators of highly charged ions in many laboratories [8,9], the
need for a consistent Dirac theory of the quantum mechan-
ical Z1eZ2 problems has become more and more urgent in
different fields of physics. Previously, this problem was ad-
dressed, basically, in the theory of supercritical atoms for
the description of effects of spontaneous and enforced cre-
ation of positrons in a supercritical field of a quasiatom
formed at slow collisions of heavy ions with a total atomic
number Z1 + Z2 > 173 [10].

Another application of the relativistic problem ap-
proach in the theory of collisions is more traditional, and
is reduced to using the model functions of a continuous
spectrum for the analysis of the scattering of relativistic
electrons on heavy diatomic molecules [11,12].
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Last time considerable interest challenges (1 + 1)- and
(2 + 1)-dimensional versions of relativistic quantum me-
chanic and quantum electrodynamic [13–15]. Importance
of these versions for the quantum field theory (QFT) was
realized properly on the borders of 70th and 80th years,
when in physics of the condense medium a number of fun-
damental discoveries were made, which, until now appar-
ently warm up living interest to the models of QFT in
spaces with the lowered dimension [16,17]. Not being re-
alistically valuable for the quantum field problem, these
models have presented rather effective instruments at the
study of quasi one-dimensional and quasi two-dimensional
medium.

Over the past years the study of systems of non-
relativistic electrons confined to a plane in an electromag-
netic field background has attracted much attention in
view of possible applications. This problem is of practical
interest because of the technological advances in nanofab-
rication technology that have made the creation of low di-
mensional structures like quantum wells, quantum wires
and quantum dots possible [18]. The relativistic exten-
sion of this problem has also turned out to be of im-
portance in the description of quantum two-dimensional
phenomena such as the quantum Hall effect and high-
temperature superconductivity [19]. Different condensed
matter physics phenomena point to the existence of (2+1)-
dimensional with an energy spectrum determined by the
Dirac equation Hamiltonian [13,14]. In particular, the de-
generate planar semiconductor with low-energy electron
dynamics is assumed to admit an adequate description
in terms of the (2 + 1)-dimensional relativistic Dirac the-
ory [20]. In conclusion, the study of physical effects occur-
ring in (2 + 1)-dimensional systems of charged particles
in strong external fields is an interesting problem from
the theoretical point of view as well from its practical



382 The European Physical Journal D

applications [21–23]. In order to analyze relativistic quan-
tum effects in the presence of strong electromagnetic fields
one should be able to compute the Green function or to
find exact solutions of the Dirac equation. Regrettably, the
Dirac equation is exact solvable only in a very restricted
family of electromagnetic configurations [24].

The purpose of the given work is the study of the dis-
crete spectrum of the two-dimensional problem of two
Coulomb centers (briefly, the problem (Z1eZ2)2) using
asymptotic methods. The difficulty in considering the
problem consist in the fact that the Dirac equation whit
the potential of two Coulomb centres does not permit com-
plete separation of variables in any orthogonal system of
coordinates and, thus, one has to deal with first-order par-
tial differential equations. Unfortunately, solving this sys-
tem of differential equations numerically is rather com-
plicated and onerous task, requiring rather complicated
calculations for each specific (Z1eZ2)2 system. For solving
the problem we use the scheme of perturbation theory,
which does not require the separation of variables. As a
result of the calculations performed, the asymptotic ex-
pression for the energy levels of the (Z1eZ2)2 system for a
case of small intercentre distance R → 0 (large intercentre
distance R → ∞) are obtained to within terms O(R3)
(O(R−3)) respectively. The D-dimensional nonrelativistic
two-Coulomb-centre problem was considered in [25].

The article is arranged as follows: in Section 2 the
method of constructing the asymptotic expansions of the
energy of the (Z1eZ2)2 system at small internuclear dis-
tances R is proposed. In Section 3 the method of con-
structing the asymptotic expansions of the energy of the
(Z1eZ2)2 system at large internuclear distances R is pro-
posed. Finally we discuss briefly and compare the results
obtained with the data from similar approximation in
case of three-dimensional two-centres problem Z1eZ2 and
present some mathematical appendixes.

2 Asymptotic behavior of potential curves
of the relativistic two-dimensional (Z1eZ2)2

problem in the united-atom limit

When the total charge of the Coulomb centres Z = Z1 +
Z2 is positive and the internuclear distance R tends to
zero, it is possible to consider the relativistic (Z1eZ2)2
problem within perturbation theory. The Dirac equation
of the Z1eZ2 problem in 2 + 1 dimensions is of the form
(� = c = me = 1)

ĤΨ = EΨ, (1)

Ĥ = σ1p2 − σ2p1 + σ3 − Z1α

r1
− Z2α

r2
, (2)

where r1,2 is the distance between the electron and corre-
sponding nucleus, Z1,2 is the charge of the Coulomb cen-
tres, �p = (p1, p2) = −i�∇ is the momentum operator, σi

are the Pauli matrices (i = 1, 2, 3), and α ≈ 1/137 is the
fine-structure constant.

Fig. 1. The scheme of motion
of an electron in case of united
atom.

Let us represent the complete Hamiltonian of the two-
Coulomb-centre problem, by the Hamiltonian of the zero
approximation ĤUA and a perturbation Ŵ :

Ĥ = ĤUA + Ŵ . (3)

The Dirac Hamiltonian of the united relativistic atom is
taken as ĤUA:

ĤUA = σ1p2 − σ2p1 + σ3 − Zα

r0
, (4)

where the atom is placed on the internuclear distance at
the point O, which divides the internuclear distance into
two segments:

R1 =
Z2

Z
R, R2 =

Z1

Z
R. (5)

Introduce polar coordinate system (r0; ϕ0), as shown in a
Figure 1: the origin is at the point O(0; 0) and the angle ϕ0

is measured from the polar axis, directed from Z1-centre
to Z2.

Now we construct the unperturbed wavefunction of a
united atom. For the zero-order function we will choose the
unperturbed wavefunction of a united atom with Hamil-
tonian (4). The eigenvalues of the operator ĤUA are
characterized by quantum numbers n, l, where n is the
principal quantum number, l is the orbital angular mo-
ments(integer). For continuous approach of nuclei R → 0,
the solutions of the Dirac equation with the potential of
two Coulomb centres should tend to the respective solu-
tion of the one Coulomb centre problem. According to this
the eigenfunctions of the operator ĤUA are represented in
the form [15]

ΨUA
nl (�r0) =

1√
2πr0

(
F (r0)eilϕ0

G(r0)ei(l+1)ϕ0

)

F
G

}
=

√
Γ (2γ + nr + 1)

Γ (2γ + 1)
√

nr!

√
1 ± ε0

4N(N − κ)
(2λ)

1
2

× (2λr0)
γ

e−λr0 [(N − κ)F (−nr, 2γ + 1; 2λr0)
∓nrF (−nr + 1, 2γ + 1; 2λr0)] . (6)
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where

λ =
√

1 − ε2
0, nr = n − |l + 1/2| − 1

2
,

ε0 =

[
1 +

(Zα)2

(nr +
√

(l + 1/2)2 − (Zα)2)2

]− 1
2

,

κ = −
(

l +
1
2

)
, N =

Zα

λ
, γ =

√
(l + 1/2)2 − (Zα)2.

It is seen that, for l = nr = 0, and ε0 becomes zero at
Zα = 1/2, whereas in three spatial dimensions ε0 equals
zero at Zα = 1. Thus, in two space dimensions the expres-
sion for the electron ground state energy in the Coulomb
field of a point-charge Z|e| no longer has a physical mean-
ing at a much lower value of Zα = 1/2.

The eigenvalues of the operator ĤUA are determined
by the formula:

ε0 =
1√

1 +
(

Zα

nr + γ

)2
. (7)

Since the spectrum of the operator ĤUA is degenerated
for l, for application of perturbation theory first of all
it is necessary to construct exact functions of the zero
approximation, for which the matrix of the perturbation
operator Ŵ is diagonal. We can show that the matrix
‖Wnl

′

nl ‖ of the perturbation operator will be diagonal for
the functions of united atom. Now we determined matrix
elements of the perturbation operator of the system:

Ŵ =
Zα

r0
− Z1α

|�r0 + �R1|
− Z2α

|�r0 − �R2|
. (8)

For these purpose we use the expansion of Ŵ in Legendre
polynomials:

Ŵ =
Zα

r0

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z1α
∞∑

l=0

(−1)lRl
1r

−l−1
0 Pl(cosϕ0), r0 > |�R1|

Z1α

∞∑
l=0

(−1)lR−l−1
1 rl

0Pl(cos ϕ0), r0 < |�R1|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z2α

∞∑
l=0

Rl
2r

−l−1
0 Pl(cos ϕ0), r0 > |�R2|

Z2α

∞∑
l=0

R−l−1
2 rl

0Pl(cos ϕ0), r0 < |�R2|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (9)

The coefficient of r−2
0 P1 for r0 > max{|�R1|, |�R2|} is equal

to Z2αR2 − Z1αR1 and, according to equation (5) this
is equal to zero. The estimates of all radial and angular
integrals made with functions (5), (6) show that at R → 0
the matrix ‖Wnl

′

nl ‖ is built from matrix elements

Wnl
′

nl =
∫

ΨUA+

nl (�r0)ŴΨUA
nl′ (�r0)d�r0,

is diagonal within members O
(
R3

)
with respect to each

group of mutually degenerated states, i.e.

Wnl
′

nl = δll′
[
Wnl

′

nl

]
2

+ O
(
R3

)
.

The leading term
[
Wnl

′

nl

]
2

of the expansion of the diagonal

matrix element of Ŵ is determined by the expansion (9)
for r0 > max{|�R1|, |�R2|}, in which the integration over r0

is carried out from the zero point:
[
Wnl

′

nl

]
2

= − (
Z1αR2

1 + Z2αR2
2

)

×
∫ ∣∣ΨUA

nl (�r0)
∣∣2 r−3

0 P2(cosϕ0)d�r0

= −Z1Z2α
4(3ε0κ(ε0κ − 1) − γ2 + 1)(ZR)2

2N3γ(γ2 − 1)(4γ2 − 1)
.

(10)

The formulae (7), (10) determine the two first terms of
the expansion in small R of a total energy(which includes
the rest energy of an electron) of the (Z1eZ2)2 system:

Enl(Z1, Z2; R) = ε0 +
[
Wnl

′

nl

]
2
+ O(R3). (11)

3 Asymptotic behavior of potential curves
of the relativistic two-dimensional (Z1eZ2)2

problem in the separated-atom limit

Now we shall determine the energy E(R) and the wave-
functions Ψ(�r; R) of an electron in the asymptotic region
when the distance R between the Coulomb centres is large.
This distance should be so large that the quantum pen-
etrability of the potential barrier separating the atomic
particles is mach smaller than unity. When charges Z1,
Z2 are different, eigenvalues E(R) of the two-Coulomb-
centre problem are divided into two classes in the asymp-
totic limit R → ∞: EI and EII– potential curves that,
for R → ∞, transform into the energy levels of isolated
atoms 1 and 2, respectively. The criterion of applicabil-
ity of the expansion given below is the requirement that
the wavefunction of the Ψ1– state, for instance, of atom
1, should not be strongly perturbed by the other particle.
The distortion of the dependence of this function on the
coordinates should be small. This is related to he energy
shift of the state induced by the interaction with perturb-
ing particle 2. The external(Coulomb) field of the latter
has to be weak compared to the typical intra-atomic fields
in order for perturbation theory to be applicable.

Similarly to (3) we represent a complete Hamilto-
nian of the two-Coulomb-centre problem by a Hamiltonian
zero-approximation ĤSA and perturbation V̂ :

Ĥ = ĤSA + V̂ . (12)

Introduce the polar coordinate system (r1, ϕ1), as shown
in a Figure 2, the origin is at the centre of the
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Fig. 2. The scheme of motion of an electron in case of sepa-
rated atom.

hydrogen-like ion eZ1, and the angle ϕ1 is measured from
the axis directed from the Z1-center to Z2-center. We will
choose in quality ĤSA the Hamiltonian of the separated
atom with charge Z1:

ĤSA = σ1p2 − σ2p1 + σ3 − Z1α

r1
. (13)

At large internuclear distances the operator of the in-
teraction between the electron and the Z2-nucleus V̂ =
−Z2α/|�r1 − �R| can be considered as a small perturbation
of the Hamiltonian ĤSA.

Like to ĤUA the eigenvalues of the operator ĤSA

are characterized by the set of quantum numbers n1, l1.
The eigenfunctions ΨSA

n1l1
(�r1) are represented by formulae

which are obtained from (6) by making the substitution
�r0 → �r1 and introducing index 1 in other formulae. The
eigenvalue of the operator ĤSA are determined by the for-
mula:

ε1 =
1√

1 +
(

Z1α

nr1 + γ1

)2
. (14)

The matrix elements of the operator V̂ can be determined
from the expansion:

V̂ = −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z2α

∞∑
s=0

Rsr−s−1
1 Ps(cosϕ1), r1 > |�R|

Z2α
∞∑

s=0

R−s−1rs
1Ps(cosϕ1), r1 < |�R|

. (15)

A matrix ‖V n1l
′
1

n1l1
‖ which consist from matrix elements

V
n1l

′
1

n1l1
=

∫
ΨSA+

n1l1 (�r1)V̂ ΨSA
n1l

′
1
(�r1)d�r1,

is not diagonal about l1 as in the case of united atom.
For the wavefunctions of the zero-order approximation

we can write

Ψ0 =
∑
l
′
1

Cl1
l
′
1
(R)ΨSA

n1l
′
1
(�r1). (16)

By substituting expansion (16) into the Dirac equa-
tion (1), and integrating over the electron coordinates, we
find expansion coefficient given by

∑
l
′
1

[
(EI − ε1)δl1l

′
1
− V

n1l
′
1

n1l1

]
Cl1

l
′
1
(R) = 0, (17)

where δlm is the Kronecker delta.
Obviously that the first term in expansion perturba-

tion operator (17) is diagonal with respect to mutually
degenerated states, the second term contain nonzero not
diagonal elements:

V n1l1
n1l1

= −Z2α

R
, (18)

V n1l1
n1l

′
1

= V
n1l

′
1

n1l1
= −(δl1,0 + δl1,−1)

√
N2

1 − κ2
1

Z2(nr1 + γ1)
Z1R2

.

(19)

By using matrix elements (18, 19) and solving the equa-
tion obtained from the condition that the determinant
in (17) should be equal to zero, we obtain the expression
for the energy terms in first-order perturbation theory:

EI(R) = ε1 − Z2α

R
+

Z2ξ1

R2
+ O(R−3), (20)

ξ1 = ± (δl1,0 + δl1,−1)
√

N2
1 − κ2

1

(nr1 + γ1)
Z1

. (21)

Formula (20) gives the expansion in the multipoles of the
energy of the electrostatic interaction of the atom eZ1 with
the distant point charge eZ2.

The asymptotic expansion of the potential curve EII

is obtained from EI by making the substitutions ε1 → ε2,
Z1,2 → Z2,1, n1, κ1 → n2, κ2, where n2, κ2 is the set of
quantum number of the isolated hydrogen-like atom eZ2.

4 Conclusion

In this work we have calculated by means of perturbation
theory the asymptotic expansions of the eigenvalues (po-
tential curves) E(R) of the two-dimensional two-Coulomb-
centre problem in the limits of united (R → 0) and sep-
arated (R → ∞) atoms with the precision O(R3) and
O(R−3), respectively.

To illustrate applications of the resulting asymptotic
formulas (10, 11) and (20, 21), we use them to calculate
electron states of the simplest two-center systems. To esti-
mate the contribution of the dimensionality factor in po-
tential curves in the united atom limit, we consider the
relation Q1(Z, R) = E3D

bin/E2D
bin between three-dimensional

and two-dimensional expression for the binding energy
Ebin = (E2 − 1)/2, when Z1 = Z2. Figure 3 presents a
relative contribution of the dimensionality factor of the
ground state energy values for the three-dimensional 3D
and two-dimensional 2D molecule ion calculated by the
asymptotic formula (2.15) [26] for the three-dimensional
case and formula (11). As is seen from Figure 3, the term
relation Q1(Z, R) does not depend on the value of charge
Z, as well as should be. At increase internuclear distance
R relation Q1 decreases.

Figure 4 presents an analogous relative contribution
Q2(Z1, R) = E3D

bin/E2D
bin of the dimensionality factor of the

ground state energy values for the 3D and 2D molecule
ion in the separating atom limit, calculated by the asymp-
totic formula (2.26) [26] for the three-dimensional case and
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Fig. 3. The relative contribution Q1(Z, R) of the ground state
energy values for the 3D and 2D molecule ion in the united
atom limit.

Fig. 4. The relative contribution Q2(Z1, R) of the ground state
energy values for the 3D and 2D molecule ion in the separating
atom limit.

formula (20). The data in this figure show that, as the Z1

and R increase, the term relation Q2(Z1, R) increases and
asymptotically tend to value 0.25.

Note that asymptotic expressions obtained here for the
potential curves (11) and (20) are applicable under the
condition that the quantities γ, γ1 are purely real, which
corresponds to the range of applicability of the Dirac equa-
tion solutions for the point charge.

We gratefully acknowledge O.K. Reity for many useful discus-
sions.

Appendix A

Angular integrals are needed for the calculation matrix
elements have the following form

∫ 2π

0

Pn(cosϕ)eimϕdϕ, (A.1)

where m-integer.
For the simplest calculating it is convenient to use

trigonometric representation of the Legendre polynomi-
als [27]

Pn(cos ϕ) = 2
1 × 3 × 5 . . . (2n − 1)

2nn!

×
[
cosnϕ +

1
1

n

2n − 1
cos(n − 2)ϕ

+
1 × 3
1 × 2

n(n − 1)
(2n − 1)(2n − 3)

cos(n − 4)ϕ

+
1 × 3 × 5
1 × 2 × 3

n(n − 1)(n − 2)
(2n − 1)(2n − 3)(2n− 5)

× cos(n − 6)ϕ + . . .
]
. (A.2)

It is necessary here to take into account that if n odd
integer, a sum is closed on a member from cosnϕ; if n
even – on a member that does not depend on cosnϕ, thus
this member is additionally multiply on 1/2. After the
substitution of representation (A.2) in integral (A.1) they
are taken to the known expression [28]:

∫ 2π

0

eimϕ cosnϕdϕ =

⎧⎨
⎩

0[m �= n]
π[m = n �= 0]
2π[m = n = 0]

.

Appendix B

1. For a calculation radial integrals in matrix elements of
perturbation operator in case small internuclear distances
it is necessary to find the following integral

K1 =
∫ ∞

0

zν−1e−kzF (−n1, γ; kz)F (−n2, γ; kz)dz,

where F (α, β; z) is confluent hypereheometric function.
The function F (−n2, γ; kz) can be determined in the

form of contour integral:

F (α, β; z) = − 1
2πi

Γ (1 − α)Γ (β)
Γ (β − α)

×
∮

C′
etz(−t)α−1(1 − t)β−α−1dt. (B.1)

After integrating over z with the help by a formula
(f.2) [29] will get

K1 = − 1
2πi

Γ (n2 + 1)Γ (γ)Γ (ν)
kνΓ (γ + n2)

∮
C′

(−t)n1−n2−1

× (1 − t)γ+n2−n1−ν−1F (−n1, γ − ν, γ;
1
t
)dt,

where F (a, b, c; z) is hypereheometric function.
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Taking into account that at integer a = n a hypere-
heometric function is a polynomial degrees of n, will get

K1 = − 1
2πi

n2!Γ (γ)Γ (ν)
Γ (γ + n2)kν

∮
C′

{
(−t)n1−n2−1

×(1 − t)γ−ν+n2−n1

+
n1−1∑
m=0

n1 . . . (n1 − m)(γ − ν) . . . (γ − ν + m)
(m + 1)!γ(γ + 1) . . . (γ + m)

×(−t)n1−n2−s−2(1 − t)γ−ν+n2−n1−1
}

dt.

Now taking into account an integral representation (B.1)
and properties F (α, β, 0) = 1, will get

K1 =
n2!Γ (γ)Γ (ν)
Γ (γ + n2)kν

Γ (γ − ν + n2 − n1)
(n2 − n1)!Γ (γ − ν)

×
{

1 + (n2 − n1)!
n1−1∑
m=0

n1(n1 − 1) . . . (n1 − m)
(m + 1)!(n2 − n1 + m + 1)!

× (γ − ν − m − 1)(γ − ν − m) . . . (γ − ν + m)
γ(γ + 1) . . . (γ + m)

}
.

2. For a calculation radial integrals in matrix elements of
perturbation operator in case large internuclear distances
it is necessary to find the following integral

K2 =
∫ ∞

0

zγe−zF (−n1, γ; z)F (−n2, γ; z)dz.

The function F (−n2, γ; z) can be determined in the form
of contour integral (B.1) and integrating over z using a
formula (f.3) (with n = 1) [29] will have

K2 =
1

2πi

Γ 2(γ)Γ (n2 + 1)
Γ (γ + n2)

∮
C′

(
−n1

γ

)n1−n2−1

× (−x)n1−n2−2(1 − x)(1 +
n1

γ
x)n2−n1−2dx.

Replacement t = −(n1/γ)x was executed here. If to take
into account an integral representation of hypereheometric
function will have

K2 = − Γ 2(γ)Γ (n2 + 1)n1(−n1
γ )n1−n2−1

Γ (γ + n2)Γ (n2 − n1 + 2)Γ (n1 − n2 + 1)

× F (n1 − n2 − 1, n1 − n2 + 2, n1 − n2 + 1;−n1

γ
).
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